
Homework 8: Solutions

5.4.2: Change order and evaluate:

∫

1

0
∫

1

y
sin(x2)dxdy

The region we’re integrating over is the triangle with end-points (0,0), (1,0)
and (1,1). Thus, changing the order yields:

∫

1

0
∫

x

0
sin(x2)dy dx

Which can be evaluated to:

∫

1

0
∫

x

0
sin(x2)dy dx = ∫

1

0
[y sin(x2)]x0 dx

= ∫

1

0
x sin(x2)dx

=
1

2 ∫
1

0
sin(x2)2xdx

=
1

2 ∫
1

0
sin(u)du

=
1

2
(− cos(1) + cos(0)) =

1 − cos(1)

2

5.4.5: Change order and evaluate:

∫

1

0
∫

1

√
y
ex

3

dxdy

x ranges from x =
√
y to x = 1. Notice x =

√
y is the same as saying y = x2

and x ≥ 0. Thus the region we’re integrating over is bounded by the x-axis,
the parabola y = x2 and the line x = 1. Thus integrating in the y direction
first, we would have to go from 0 to x2.
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∫

1

0
∫

1

√
y
ex

3

dxdy = ∫
1

0
∫

x2

0
ex

3

dy dx

= ∫

1

0
ex

3

x2 dx

=
1

3 ∫
1

0
ex

3

3x2dx

=
1

3 ∫
1

0
eu du

=
1

3
(e − 1)

5.4.8: Show:

1

2
(1 − cos(1)) ≤ ∫

1

0
∫

1

0

sin(x)

1 + (xy)4
dxdy ≤ 1.

Since x and y are both between 0 and 1, the denominator, 1 + (xy)4, is at
least 1 and at most 2. i.e.

1

2
≤

1

1 + (xy)4
≤

1

1
.

Also, since sin(x) is positive for x in the interval [0,1], we can multiple all
sides by sin(x). Then notice that sin(x) ≤ 1 to obtain:

sin(x)

2
≤

sin(x)

1 + (xy)4
≤ sin(x) ≤ 1.

Finally, integrating over the square [0,1] × [0,1] yields:

1

2 ∫
1

0
∫

1

0
sin(x)dxdy ≤ ∫

1

0
∫

1

0

sin(x)

1 + (xy)4
dxdy ≤ ∫

1

0
∫

1

0
dxdy.

The left hand side evaluates to

1

2 ∫
1

0
∫

1

0
sin(x)dxdy =

1

2 ∫
1

0
(− cos(1)) − (− cos(0))dy =

1

2
(1 − cos(1)),

2



giving us:

1

2
(1 − cos(1)) ≤ ∫

1

0
∫

1

0

sin(x)

1 + (xy)4
dxdy ≤ 1.

5.5.12: Find the volume of the solid bounded by

x2 + 2y2 = 2, z = 0, and x + y + 2z = 2

x2 + 2y2 = 2 defines a vertical cylinder that crosses the xy-plane in an ellipse.
z = 0 is the xy-plane. Since the ellipse in the xy-plane given by x2 + 2y2 = 2
does not intersect the line x+y = 2, the plane x+y+2z = 2 crosses the cylinder
above the xy-plane. Thus the region looks like:
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For fixed (x, y), the values of z range between the planes z = 0 and x+y+2z =
2, (so 0 to (2−x−y)/2). For a fixed y, since x2+2y2 = 2, we get that x ranges

between, −
√

2 − 2y2 to
√

2 − 2y2. Thus we get the volume V is given by:

V = ∫

1

−1
∫

√

2−2y2

−

√

2−2y2
∫

1−x+y
2

0
dz dxdy

= ∫

1

−1
∫

√

2−2y2

−

√

2−2y2
[(1 −

y

2
) −

x

2
]dxdy

= ∫

1

−1
2(1 −

y

2
)
√

2 − 2y2 − 0dy

=
√

2∫
1

−1
2
√

1 − y2 − y
√

1 − y2 dy

= 2
√

2∫
1

−1

√
1 − y2 dy −

√
2∫

1

−1
y
√

1 − y2 dy

=
√

2π − 0 =
√

2π.

Where in the second last line, the first integral we identify as the area of a
semi-circle of radius 1, and the second integral is 0, since it is the integral of
an odd function over a symmetric interval.

5.5.22: Evaluate

∭
W
(x2 + y2)dxdy dz

whereW is the pyramid with top vertex (0,0,1) and base vertices (0,0,0), (1,0,0), (0,1,0),
and (1,1,0).

The horizontal cross-section of this pyramid at height z is a square with
one corner at (0,0, z) and side length 1 − z. Thus both x and y range from
0 to 1 − z, and the integral becomes:
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∭
W
(x2 + y2)dxdy dz = ∫

1

0
∫

1−z

0
∫

1−z

0
(x2 + y2)dxdy dz

= ∫

1

0
∫

1−z

0
(
(1 − z)3

3
+ (1 − z)y2)dy dz

= ∫

1

0
(
(1 − z)4

3
+

(1 − z)4

3
)dz

=
2

3 ∫
1

0
(1 − z)4 dz

=
2

3
[
(1 − z)5

−5
]

1

0

=
2

3
(0 −

1

−5
) =

2

15
.

5.5.24: (a) Sketch the region for

∫

1

0
∫

x

0
∫

y

0
f(x, y, z)dz dy dx.

The region is a tetrahedron bounded by the 4 planes z = 0, z = y, y = x and
x = 1. In other words, it is the tetrahedron with its four vertices the points
(0,0,0), (1,0,0), (1,1,0) and (1,1,1):
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(b) Change order to dxdy dz.

x ranges between the planes x = y and x = 1. After x is integrated, we’re
left with an integral dy dz. We want the region in the yz-plane that we’re
integrating over. This is the projection of the tetrahedron to the yz-plane,
and we see it is a triangle with vertices (0,0,0), (0,1,0) and (0,1,1). Thus
we need to integrate y from y = z to y = 1. z then ranges from 0 to 1. Thus
we get that the integral is:

∫

1

0
∫

1

z
∫

1

y
f(x, y, z)dxdy dz.

6.1.2: Determine if the functions T ∶ R3 → R3 are one-to-one and/or onto:

(a) T (x, y, z) = (2x + y + 3z,3y − 4z,5x)

First note that if we let A be the matrix

A =
⎛
⎜
⎝

2 1 3
0 3 −4
5 0 0

⎞
⎟
⎠
,

we have (if we think of (x, y, z) as a column vector)

T (x, y, z) = A(x, y, z).

The matrix A is invertible, [since its determinant is 5 × (−4 − 9) ≠ 0], so for
any vector (a, b, c), we can solve T (x, y, z) = (a, b, c) by simply multiplying
both sides by A−1 to get (x, y, z) = A−1(a, b, c)

Thus for every (a, b, c) we can find an (x, y, z) that is sent by T to it (hence
onto), and we can only find one such (x, y, z) (hence one-to-one). So the
function is both onto and one-to-one.

(b) T (x, y, z) = (y sin(x), z cos(y), xy)
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Both (0,0,0) and (1,0,0) are sent to the point (0,0,0), so the function is
not one-to-one.

Also, the point (0,0,1) is not in the image, since for the last coordinate
to be 1, we must have xy = 1 so both x and y are ±1. But this forces the
first coordinate to be sin(1) which is not equal to 0. Thus the function is not
onto either.

(c) T (x, y, z) = (xy, yz, xz)

Both (1,1,1) and (−1,−1,−1) are sent to the point (1,1,1), so the function
is not one-to-one.

As for onto, nothing is sent to (1,1,0), since xz = 0 implies either x = 0
or z = 0. Either way, one of the first two coordinates is 0. So the function is
not onto either.

(d) T (x, y, z) = (ex, ey, ez)

This function cannot be onto since e is positive, and the power of a positive
number is always (strictly) positive. Thus, for instance, nothing is sent to
(0,0,0) or to (−1,−3,−11).

The function is one-to-one though, as can be seen as follows. Suppose, two
points get sent to the same value, i.e. T (x, y, z) = T (x′, y′, z′). Then ex = ex

′

,
and taking logarithms on both sides yields, x = x′ as the only real solution.
Similarly y = y′ and z = z′. Thus the points (x, y, z) and (x′, y′, z′) are ac-
tually the same. Since this works in general, it proves the claim. Thus T is
one-to-one but not onto.

6.1.10: Find a T that sends the parallelogramD∗ with vertices (−1,3), (0,0), (2,−1), (1,2)
to the square D = [0,1] × [0,1].

Linear maps (those given by a matrix) send squares to parallelograms, so
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we can try to find a linear map. The matrix (
a b
c d

) sends (1,0) to its first

column, and (0,1) to its second column (as you may easily check).

Thus the matrix A = (
2 −1
−1 3

) sends (1,0) to (2,−1) and sends (0,1) to

(−1,3) (and hence sends D to D∗). Since we want a map from D∗ to D, we
are looking for the inverse matrix,

A−1 =
1

5
(

3 1
1 2

) .

Thus T is given by,

T (x, y) = A−1 (
x
y

) =
1

5
(

3 1
1 2

)(
x
y

) =
1

5
(3x + y, x + 2y) .

6.2.1: Suggest substitution and find its Jacobian.

(a) ∬
R
(3x + 2y) sin(x − y)dA

Letting u = 3x + 2y and v = x − y would greatly simplify the integral. The
resulting integral would become

∬
R′

u sin(v) ∣
∂(x, y)

∂(u, v)
∣ dA

where ∣
∂(x,y)
∂(u,v) ∣ is the absolute value of the determinant of the matrix

(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)

is just a number in this case.

Moreover, the transformation (u, v) = T (x, y) = (3x + 2y, x − y) is one-to-
one and onto, as it must be in order to be a valid change of coordinates. So
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it has an inverse T −1 such that T ○ T −1 = Identity. Using chain rule, we thus
get,

∂(x, y)

∂(u, v)

∂(u, v)

∂(x, y)
= 1.

We do this since, ∣
∂(u,v)
∂(x,y) ∣ is much easier to compute, (you may also solve for

(x, y) in terms of (u, v) and compute the Jacobian directly).

∂(u, v)

∂(x, y)
= ∣

3 2
1 −1

∣ = −5.

Thus
∂(x, y)

∂(u, v)
=

1

−5

and the Jacobian is its absolute value 1
5 .

(b) ∬
R
e(−4x+7y) cos(7x − 2y)dA

Let u = −4x + 7y and v = 7x − 2y. Then

∂(u, v)

∂(x, y)
= ∣

−4 7
7 −2

∣ = 8 − 49 = −41.

Thus
∂(x, y)

∂(u, v)
=

1

−41

and the Jacobian is its absolute value 1/41.

6.2.2: Suggest substitution and find its Jacobian.

(a) ∬
R
(5x + y)3(x + 9y)4 dA

Let u = 5x + y and v = x + 9y. Then

∂(u, v)

∂(x, y)
= ∣

5 1
1 9

∣ = 45 − 1 = 44.
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Thus
∂(x, y)

∂(u, v)
=

1

44

is the Jacobian.

(b) ∬
R
x sin(6x + 7y) − 3y sin(6x + 7y)dA

Note that the integral may be written as ∬R(x − 3y) sin(6x + 7y)dA, so let
u = x − 3y and v = 6x + 7y. Then

∂(u, v)

∂(x, y)
= ∣

1 −3
6 7

∣ = 7 + 18 = 25.

Thus
∂(x, y)

∂(u, v)
=

1

25

is the Jacobian.
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